Flexible Active Crossbar Arrays Using Amorphous Oxide Semiconductor Technology toward Artificial Neural Networks Hardware
نویسندگان
چکیده
Memristor crossbar arrays can compose the efficient hardware for artificial intelligent applications. However, requirements a linear and symmetric synaptic weight update low cycle-to-cycle (C2C) device-to-device variability as well sneak-path current issue have been delaying its further development. This study reports on thin-film amorphous oxide-based 4×4 1-transistor 1-memristor (1T1M) crossbar. The a-IGZO is built flexible polyimide substrate, enabling IoT wearable In novel framework, transistor memristor are fabricated at same level, with processing steps sharing materials all layers. 1T1M cells show symmetrical plasticity characteristic C2C variability. performs like an analog dot product engine vector–matrix multiplications in crossbars demonstrated experimentally, which successfully suppressed, resulting proof-of-concept cost-effective, neural networks hardware.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Improving Hardware Branch Predictors using Artificial Neural Networks
An abstract of the thesis of Andres Anibal Rustan for the Masters of Science in Electrical and Computer Engineering were presented November 1, 1999. Title: Improving Hardware Branch Predictors using Artificial Neural Networks This research shows that using an Artificial Neural Network as the hardware branch predictor of a microprocessor leads to performance as good as standard branch predictors...
متن کاملUsing artificial neural networks to improve hardware branch predictors
Among the current techniques to predict the outcome of branches in modern microprocessors, two-level branch predictors have shown to be one of the best mechanisms. The correct prediction of branches is a fundamental factor for achieving high performance. Branch interference is a major contributor to the number of branches mispredicted by two-level predictors [4]. Increasing the size of the PHT ...
متن کاملArtificial Neural Networks Processor - A Hardware Implementation Using a FPGA
Several implementations of Artificial Neural Networks have been reported in scientific papers. Nevertheless, these implementations do not allow the direct use of off-line trained networks because of the much lower precision when compared with the software solutions where they are prepared or modifications in the activation function. In the present work a hardware solution called Artificial Neur...
متن کاملTarget classification with artificial neural networks using ultrasonic phased arrays
The problem of classifying objects from their ultrasonic signature for robotic applications is studied in this paper. The system developed utilises the spatial diversity of a four element linear array transducer to enhance classification performance. A signal pre-processing technique employing time domain envelope detection in combination with a multi-layer perceptron neural network has yielded...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced electronic materials
سال: 2022
ISSN: ['2199-160X']
DOI: https://doi.org/10.1002/aelm.202200642